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Approximations in statistical turbulence theory often rely on modelling the decay 
in time of velocity correlations with a simple exponential decay. The decay rate is 
viewed as a renormalized viscosity. The three simplest implementations of this 
approximation scheme were originally given independently by Kraichnan, Edwards 
and Leslie. Each of these investigators used a different formalism and each achieved 
different renormalization prescriptions. These three different results are reexamined 
here entirely in terms of direct-interaction theory. The difference in the prescriptions 
of Kraichnan and Leslie is shown to be the product of different definitions of 
renormalized viscosity. Edwards’ prescription is shown t o  result from an inconsis- 
tent identification of the non-stationary energy-spectrum relaxation rate with the 
viscosity. An assessment of the validity of the Markovian closure approximation, and 
a prescription for non-stationary renormalized viscosity are provided. 

1. Introduction 
Statistical perturbation theories of turbulence have produced many different 

prescriptions for eddy viscosity, that is, renormalized molecular viscosity. Our object 
here is to give a precise self-consistent interpretation of the three prescriptions due 
originally to Edwards (1964), Kraichnan (1964) and Leslie (1973) respectively. These 
prescriptions derived for fully isotropic, homogeneous, incompressible flow take the 
form 

where B = f 1,0 differentiates between the three prescriptions. The vectors k , p ,  q are 
wavevectors arising from the spatial Fourier transform of the velocity field, which 

U ( X ,  t )  = ddke+ik’X u,(t) .  
we take as 

d is the number of spatial dimensions, which we take to be two or three, although 
analytic continuation to arbitrary dimension d 2 2 causes no difficulty (Fournier & 
Frisch 1978). u k  is the ensemble-average modal-energy spectrum, and the interaction 
coefficient bk ,p ,q  is defined for dimension d by 

s 
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with 01 the angle between p and q.  vk is the linear viscosity, usually taken as the 
Laplacian form vk2, but more general forms are admissible; pk is the renormalized 
viscosity, and pk- vk is the eddy viscosity. 

The E = + 1 prescription was originally derived by Edwards (1964) by using a 
perturbation method in Fokker-Planck formalism. The E = 0 prescription was 
originally derived by Kraichnan (1964) using direct-interaction (DI) theory, and later 
by Herring (1965) using Fokker-Planck formalism. The e = - 1 prescription was 
originally derived by Leslie (1 973) using response-function Fokker-Planck formalism. 
For a review of these results see Leslie (1973) and Lee (1974). 

There remains some confusion in the literature in understanding how such different 
prescriptions arise from derivations which all have similar physical assumptions. We 
hope to clear up this confusion by examining carefully the approximations necessary 
to obtain these prescriptions. We find it convenient to work entirely in DI theory 
(Kraichnan 1959), although a similar analysis can be given in Fokker-Planck 
perturbation theory. We feel that these investigations are easier to describe in DI 
theory, and, as Leslie (1973) has shown, DI theory is more general than the 
Fokker-Planck perturbation methods and consequently can be used to generate more 
precise albeit more complicated descriptions of turbulence. Also, we aim at directing 
some attention a t  the much neglected c = - 1 prescription of Leslie (1973). 

There are two essential approximations necessary to obtain renormalization 
approximations of the form (1.1). The first invokes a fluctuation-dissipation relation, 
which provides a connection between two-time velocity correlations and the response 
of the fluid to infinitesimal external perturbations. The second assumes that the 
response function is dominated by simple exponential decay in time. Carefully 
examining these approximations leads to the conclusion that the e = + 1 prescription 
is inconsistent. We find that the right-hand side of (1.1) with e = + 1 defines the rate 
Y k  a t  which the energy spectrum relaxes when perturbed from a stationary state, and 
we show that this is valid only when ,uk 9 Y k ,  so that it is inappropriate to identify 
,uk with Yk. The c = 0 prescription is shown to give a consistent approximation for 
the integral over all time of the response function as l/pk, while the e = - 1 
prescription is shown to be a consistent approximation to the long-time response of 
the system. 

I n  $2, we introduce the DI equations. Section 3 discusses the fluctuation-dissipation 
relation and its extension to non-stationary statistics. Section 4 examines the three 
prescriptions in stationary state. Section 5 deals with the non-stationary state and 
shows the inconsistency in the e = + 1 prescription and the extension of the 
prescriptions to non-stationary flow. An interesting byproduct of this analysis is a 
better understanding of the regime of validity for Markovian closure theories of the 
eddy-damped quasinormal type. 

DI theory is known to  give inaccurate results for strong turbulence. Alternative 
theories which address the problem of high-Reynolds-number turbulence have been 
developed. These lead to renormalization prescriptons which do not simply derive 
from DI theory (cf. Kraichnan 1964, 1971, 1976; Leslie 1973; Andre5 1974; Legras 
1980). We attempt no analysis of those results here. For problems of weak turbulence, 
in particular in systems with a strong component of wave propagation, D I  theory 
should be perfectly adequate. Thus it is important to understand clearly approxim- 
ations to the DI equations, a point emphasized by some recent work in plasma and 
geophysical problems (cf. Holloway & Hendershott 1977; DuBois & Rose 1981 ; 
DeWitt & Wright 1982; Carnevale & Martin 1982; Carnevale & Frederiksen 1983). 
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2. Direct-interaction equations 
We take as our starting point the DI  equations. DI theory is a fairly general 

second-order renormalized perturbation theory, which can be applied to a wide class 
of field equations including the Navier-Stokes equation. The derivation and validity 
of the DI  equations has been discussed a t  length in the literature. We refer the reader 
to  Leslie (1973) and Martin, Siggia & Rose (1974) for the derivation and further 
references. Specializing to  homogeneous isotropic incompressible turbulence, DI  gives 
a coupled pair of integro-differential equations for the two-time ensemble-average 
correlation function of velocity amplitudes 

(2.1) ( v i ( k ,  t )  vj( - k ,  t ‘ ) )  = Uii(k, t ,  t’) = P,,(k) U,(t ,  t’) 

and the ensemble-average retarded response function 

G&, 4 t’) = p,jW Gk(4 t ’ ) ,  

where vi(k, t )  is the ith Cartesian component of velocity amplitude and 

G i j ( k ,  t ,  t ‘ )  is the spatial Fourier transform of the ensemble average of the retarded 
infinitesimal-impulse response function which gives the response of the field v i (x )  a t  
the time t due to an infinitesimal perturbation in the field vi(x’)  a t  time t ’ .  The term 
retarded indicates that this response function vanishes fort < t’ following the dictates 
of causality. Furthermore, by definition we must have G,(t, t )  = 1 .  

The ensemble for the average can be considered the ensemble of initial conditions. 
I n  DI  theory, it is easy to  include the effects of a random, Gaussian-distributed 
external forcing fi(k, t ) ,  which we add here for completeness. Hence the ensemble 
average also implies an average over the forcing distribution. We write the variance 
of the forcing as 

The DI equations are 

(p + u,) Uk(t ,  t’) = 

(fAk t ) f , ( -k ,  t ) )  = p,jW w, t’). (2.3) 

dt” [2$(t, t ” )  Uk(t’, t”) +Z,((t, t ” )  Gk(t’, t ” )  + Fk(t, t” )  Gk(t’ ,  t ” ) ] ,  

(2.4) 
jt: 

( ~ + u , ) G , ( t , t ’ ) - - ~ ~ d t ” 2 $ ( t , t ~ ’ ) G , ( t ” , t ’ )  = s(t-t’). (2.5) 

where to denotes the initial time ( t  > to and t’ > t o ) .  The Z-functions are given by 

2k2 
(2.7) c‘,(t, t ’ )  = -- 

d - 1  

where the coefficient b,,, is given by (1.2) and the coefficient akpq is given by 

akpq  = %cpq + & J ) .  

The notation Z< and c‘ is a holdover from quantum statistical theory (e.g. 
Langreth 1975). We note that the symmetry U,(t , t ’ )  = U,(t’ , t )  implies the same 
symmetry for Z,( ( t ,  t ’ ) ,  and the vanishing of Gk(t ,  t’) for t < t’ implies that  Fk(t, t’) 
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vanishes for t < t’. Equations (2.4) and (2.5) are in the form of the Martin, Siggia & 
Rose (1974) equations, which represent a formally exact set of equations for G and 
U .  In  the Martin, Siggia & Rose (1974) equations the Z are infinite series involving 
terms of higher and higher degree in the G and U ,  and these equations are the 
analogues of Dyson’s equations for classical statistical field theory (cf. Roman 1969). 
DI theory truncates these series a t  the first terms, which are given by (2.6) and (2.7). 
Kraichnan (1961) has shown the DI equations to be exact for certain model problems. 
Again we refer the reader to the literature for a full critique of D I  theory. 

An equation for the evolution of the energy spectrum Uk(t, t )  can be obtained quite 
simply from (2.4). To do this we first note that 

where the limit is taken with t‘ < tort‘ > t .  We also specialize to the case ofwhite-noise 
forcing, that is, 

because this is all we shall need here. Extensions to non-white forcing are more 
complicated, but can be handled in a straightforward way. The result for white 
forcing is 

Fk(t, t ’ )  = d(t-t’) Fk, (2.8) 

OD 

(;+2%) Uk( t , t )  = % + 2 j t ,  dt”[Z;( t , t” )  Uk(t ,  t” )+Z;; ( t , t” )G, ( t , t” ) ] .  (2.9) 

3. Non-stationary fluctuation-dissipation relation 
An essential step in obtaining the prescriptions considered here is the simplification 

of the DI equations through the introduction of a fluctuation-dissipation relation. 
This relation permits the elimination of Uk(t, t’) in terms of Gk(t, t ’ ) .  It has been proved 
(Kraichnan 1959 b ; Leith 1975) that for unforced inviscid spectrally truncated flow 
in stationary state, the fluctuation-dissipation relation 

u,(t, t’)  e(t- t’)  = ~ , ( t ,  t’) up, (3.1) 

holds exactly. Here 6(t - t’) is the Heaviside step function and Uit is the stationary 
energy spectrum. For unforced inviscid spectrally truncated flow Uit has the 
canonical equilibrium form (Kraichnan 1975) 

Uit = (u+pk2)- l ,  (3.2) 

where u and p are constants with p = 0 in more than two dimensions (d  > 2). Also 
for forced viscid dynamics where the stationary-state probability distribution is 
Gaussian, the fluctuation-dissipation relation (3.1) can be shown to be exact (Deker 
& Haake 1975). For example, this would be the  case for Thompson’s (1972) solution 
for spectrally truncated flow with white-noise forcing with spectrum 

Fk = 2 V k ( a + p k 2 ) - l .  (3.3) 

Furthermore, there is some evidence to suggest that (3.1) is areasonable approximation 
to realistic turbulent flows except in the dissipation range (Leith 1975; Herring & 
Kraichnan 1972; Bell 1980). 

In order to obtain renormalization prescriptions that are valid in nonstationary 
states and also to understand the Edwards prescription (8 = + 1 )  fully, i t  is necessary 
to generalize the fluctuation-dissipation relation to non-stationary states. 
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It follows directly from the DI equations that for white-noise forcing 

uk( t ,  t’) @(t-t ’ )  = Gk(t, t ’ )  Uk(t’, t ’ )  

+ [:, dt” [: dt”’G,(t, t ” )  [Z+(t”, t”’) Uk(t”’, t’) + Zz (t” ,  t”’) Gk(t’, t’”)]. 
(3.4) 

The details of the derivation of this relation are given in the appendix. 
There are certain cases for which the integral on the right-hand side of (3.4) 

vanishes exactly. For example, this is true for the stationary states mentioned above 
(Thompson 1972 ; Kraichnan 1975). This is also true for certain simple non-stationary 
states (Thompson 1982; Carnevale 1982). Near such states, the neglect of this integral 
should be a valid approximation. 

I n  general, it is difficult to  assess a priori how large an error is made by neglecting 
this integral. We can again cite the work of Leith (1975), Herring & Kraichnan (1972) 
and Bell (1980) as partial justification for such an approximation in realistic 
turbulence applications. As we shall see, this approximation is necessary to obtain 
simple viscosity renormalization. By neglecting the integral term we obtain the 
non-stationary fluctuation-dissipation relation in the form 

uk( t ,  t ’ )  @(t- t ’ )  = Gk(t, t ’ )  Uk(t’, t ’ ) .  (3.5) 

This form is also given by Orszag (1970), Lee (1974) and others. The significant thing 
to  note is that  the energy spectrum on the right-hand side of (3.5) is evaluated at 
t’ and not t .  This will be crucial in our analysis of Edwards’ prescription ( E  = + 1 ) .  
Note that (3.5) is the appropriate generalization of the fluctuation-dissipation 
relation independent of whether or not the system is nonlinear. 

This point is sufficiently important that we take space here to emphasize i t  with 
a simple example. Consider the following simple Langevin equation (cf. Chandrasekhar 
1943; Leith 1971): 

(;+A) = f ( +  (3.6) 

We take all quantities as real, although the extension to  the complex domain is also 
easy. We assume the initial state ensemble is such that 

(a(t0)) = 0, ( a v o ) )  = 4 

( f ( t ) f ( t ’ ) )  = W - t ’ ) ,  ( a ( to ) f ( t ) )  = 0. 

and f ( t )  is taken as randomly distributed and white noise in time with variance 

The statistics are easily computed exactly for all time with the following relevant 
results : 

F 
2h 

(a(t)a(t’))B(t-t’) = - exp[-h(t-t’)]@(t-t’) 

<az(t’)) = g+ ” (  a:-- 3 exp[-2h(t’-to)]. 

The response function for this problem is trivially given by the linear retarded Green 
function 

G(t, t’) = exp [ - h(t -t’)] @(t- t ’ ) .  (3.9) 
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By combining these results we see that the non-stationary fluctuation-dissipation 
relation 

(a( t )  a(t’)) O(t-t’)  = G(t ,  t ’ )  (a2((t’)) (3.10) 

is exact at all times, no matter how far from the stationary state. 
For this simple linear system, the decorrelation rate h of the two-time correlation 

and response functions and the relaxation to equilibrium rate 2h of the single-time 
correlation function are simply related. However, for nonlinear systems this simple 
relationship is not in general valid (Leith 1971, appendix $8. 

4. Stationary state 
We begin our analysis of viscosity renormalization with a study of the stationary- 

state DI equations. I n  stationary state the correlation and response functions can 
be written in terms of a single temporal variable t - t ’ ,  that is, U k ( t - t ’ )  and G,(t-t’) .  
The initial time to can be taken as - 00, and we can define frequency transforms 
according to  Q, 

Uk.0) = I, eioT Uk.7) d7. (4.1) 

For simplicity we use the same symbol for a function and its Fourier transform since 
the nature of the argument adequately differentiates between the two. The response- 
function equation (2.5) then can be written as 

and, with the stationary fluctuation-disspation relation (3. l ) ,  we have 

The linear response function is simply an exponential in time : 

or equivalently a simple pole in the complex w-plane: 

i 
G$(w) = -. 

w + iv, (4-5) 

For the nonlinear system we suppose that Gk(w) in general has poles and branch cuts 
in the complex w-plane (Roman 1969; DuBois & Rose 1981); moreover, one of the 
poles at say w = zk = - ip, is the nonlinear modification of the pole w = - iv, of the 
linear response function. From (4.2) i t  then follows that the exact equation for the 
singularity zk is 

this corresponds to  mass renormalization of quantum field theory (Roman 1969, 
equations (5-97)). Thus the renormalized viscosity must satisfy the exact equation 

pk = vk-Zi(-ipk). (4.7) 

It must be emphasized that this equation does not depend for its validity on any 
simple pole approximation to the response function. For actually evaluating 
Fk( - ip,) we shall, however, use a single-parameter representation of Gk(w) in which 
vk in (4.4) and (4.5) is replaced by the renormalized viscosity p,. The self-energy P,(w)  
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is a function analytic in the upper half-plane ; thus its evaluation at w = - ip, needs 
to be accomplished through analytic continuation into the lower half-plane. This 
continuation is most readily carried out for the corresponding discrete problem where 
the continuous integrals over p and q are replaced by discrete sums. This would 
certainly be an appropriate description of computer simulations, and is in accord with 
the notion of approximating real flows by taking smaller and smaller mesh sizes in 
a discrete representation of physical space. With discrete sums we see that if we 
substitute in a simple-pole form for G(w) in L‘(w), then the analytic continuation of 
C ( w )  off the real axis causes no difficulty, and finding the singularities of (4.2) reduces 
to finding the roots of a polynomial. Thus we are led to a continued-fraction or Pad6 
approximation for G(w). To make this scheme explicit we must first examine the 
behaviour of G ( w )  near a simple pole a little more carefully. Let zf) be a root of (4.6). 
Then we have by Taylor expansion of pk(w) 

i 

Thus we see that, provided that 

we have a simple pole at zf) with residue 

This leads us to an approximate representation of Gk(w)  as a sum of simple poles with 
positions given by zf) and residues iZf) or equivalently G k ( t -  t ‘ )  a sum of exponentials 
with weights Zf). The implementation of such an approximation scheme would be 
iterative and would clearly be applicable to systems with linear wave modes as well 
as viscosity. This suggestion for fluids has been given by Carnevale & Martin (1982) 
for /3-plane turbulence, Carnevale & Frederiksen (1983) for internal waves, and 
implemented by DuBois & Rose (1981) for Langmuir turbulence and by DeWitt & 
Wright (1982) for internal waves. There is evidence to suggest that branch cuts in 
G(w) can also be studied by this method, by iterating to high numbers of poles (DuBois 
& Rose 1981 ; Kraichnan 1970; Common 1970). 

To make a connection with single-parameter representations of Gk(w) we focus on 
that root zk = -ipk which is the continuation of -iv, in the linear case, that is, the 
root that reduces to -iv, in the limit U j j + O .  Then ,uk satisfies (4.7) and 

with 

iz, 
w+ip,’ 

G k ( W  X -i,uk) X ~ (4.9) 

(4.10) 

If we wish to neglect all contributions to Gk(w) except this effect of nonlinear 
correction to viscosity, we cannot simply replace Gk(w) by (4.9) because this does not 
satisfy the condition Gk(t ,  t ’ )  = 1, or equivalently the sum rule 

Gk(w)dw/27t = 1.  s 
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Thus to replace Gk(w) by simply the part which represents an effective viscosity we 
define the renormalized propagator 

or equivalently 

(4.11) 

(4.12) 

This is the analogue of propagator renormalization in quantum field theory (cf. 
Roman 1969). Calculating r k ( w )  with (4.1 1) yields 

(4.13) 

Again we note that, for a discrete representation of the integrals in (4.13), the analytic 
continuation of w into the lower half-plane causes no difficulty. So, if we evaluate 
Z ( w )  at w = -ipk, equation (4.7) for p k  becomes 

(4.14) 

This is the same result that Leslie (1973) obtained from his Fokker-Planck response- 
function formulation, that is, the e = - 1 prescription. Thus we see that the e = - 1 
prescription gives an approximation to the shift in the linear pole at w = -ivk due 
to nonlinear effects. 

If we consider the representation with continuous integrals over wavevectors, then 
the analytic continuation of c k ( w )  into the lower half-plane is more difficult. Z i ( w )  
as written in (4.13) is analytic in the upper half-plane but may have a complicated 
branch structure in the lower half-plane. Thus the evaluation of Zi( - ipk) is no longer 
straightforward. A complete treatment would require additional information about 
this branch structure or direct numerical calculation. A simpler approach would be 
to evaluate Z i ( w )  where it is analytic as close to the singularity w = - i,uk as possible, 
that is, at w = 0. This leads to the approximation 

p k  = vk-Zi(o)  (4.15) 

to the exact expression (4.7). Equation (4.15) with the simple-pole representation of 

(4.16) 
Gk(w) gives 2k2 bkpq utt 

P P  +I% 

p k  = vk+- d-1 

Equation (4.15) is the analogue of intermediate renormalization in quantum physics 
(Bjorken & Drell 1965, 9 19.9). The result (4.16) is Kraichnan's (1964) prescription, 
that is, the E = 0 prescription. Note that 

Gk(t-t') d(t-t'), 

We see that intermediate renormalization is equivalent to defining 

,Uk (Gk(U = o))-'. (4.17) 

Thus p k  given by the e = 0 prescription actually gives an approximation to the full 
integral in time of the response function, and only indirectly an approximation of 
the nonlinear correction to vk. 
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Finally we turn to Edwards (c = + 1 )  prescription. From ( 1 . 1 )  and (4.13) we 
immediately see that this prescription can be written as 

P k  = u k - C k (  + iPk), 

when the renormalized pole approximation for Gk(w)  is used. This would not seem 
to have any particular significance with respect to the response function equation. 
To see the significance of Zi( +ipk) we must go to the energy equation (2.9). For the 
stationary state with stationary fluctuation-dissipation relation, (2.9) reduces to 

00 

~ U , U $ ~  = Fk+2 [ dt”[Ck(t-t”) U”kt+CC$(t-t”)lGk(t-tn), (4.18) 
J - w  

or equivalently in terms of frequency transforms 

O0 dw 
(4.19) 

We now use the simple exponential form for Gk(t - t’) or equivalently the simple-pole 
form for Gk(w) to obtain 

Equation (4.20) is the same result as obtained by Edwards (1964). We can rewrite 
this expression as 

2(vk-ZTk(ipk)) Uf  = Fk+AFk. (4.21) 

This suggested to Edwards that one could identify vk - zTk(ipk) as the renormalized 
viscosity p,. We believe this identification is erroneous and feel that the identification 
of this quantity as a relaxation rate 

Y k  = Vk -Ck(iPd (4.22) 

is correct, as we shall demonstrate in $5 .  The relaxation rate yk is the rate a t  which 
a perturbation of the energy spectrum Ugt relaxes, and should not be confused with 
renormalized viscosity, which parametrizes the response function. An interesting 
example which illustrates how misleading the stationary energy-balance equation 
may be is Thompson’s (1972) exact two-dimensional stationary solution, with forcing 
defined by 

2uk Ugt = F,, (4.23) 

with Ugt = (a+/3k2)-l .  I n  that case, we have ZTk(ipk) Uit = -+AFk. Even though the 
energy-balance equation assumes the simple linear form (4.23), we must still expect 
that the response function reflects the underlying nonlinear dynamics and cannot be 
represented by the linear response function. 

5. Approach to stationary state 
I n  order to give a physical interpretation to the relaxation rate defined by 

Y k  = uk-zTk(iPk) 

= u,+- 2k2 jddpddqG(k-p-q) b,,, Uit 
d - 1  P k  + P P  +Pq’ 
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we must examine the manner in which the single-time correlation function or energy 
spectrum approaches stationary state. The non-stationary energy equation for 
white-noise forcing is again 

where we have set to = 0 for convenience. We now imagine that at t = 0 the energy 
spectrum is slightly perturbed from stationary state. We introduce the non-stationary 
fluctuation-dissipation relation ( 3 . 5 )  to obtain 

(&+ 2%) Udt,  t )  -Fk = 2 s,” dt” [C’,(t, t”) Gk(t ,  t ” )  Uk(t”, t ” )  +C; ( t ,  t ” )  Gk(t ,  t ” ) ] .  (5 .3 )  

If we then assume that the response rate P k  is much larger than the rate of change 
oftheenergy spectrum, we cansimplify ( 5 . 3 )  even further. According to this slow-decay 
assumption, it becomes reasonable to consider an approximation to the following 
Taylor series : +...I. (5 .4 )  

a2u(t, t )  
Gk(t, t“)  Uk(t”, t ” )  = Gk(t ,  t “ )  a uk( t ,  t)+ g(t - t ” ) 2  

at a t 2  

Since Gk(t,  t” )  is significant only when t - t ”  is small, and since we are assuming that 
Uk(t ,  t )  changes only very slowly, it may be appropriate to approximate (5 .4 )  by 

(5 .5 )  

We can call (5 .5 )  the Markovian approximation, for as we shall see it leads to the 
Markovian closure theory of turbulence. Using ( 5 . 5 )  in (5 .3 )  yields 

Gk(t ,  t ” )  Uk(t”,  t ” )  x Gk( t ,  t” )  U,(t, t ) .  

By using the Markovian approximation (5 .5 )  in writing out the L’, using the re- 
normalized propagator G,(t-t’)  = B(t-t’)  exp [ -yk(t-t’)], and performing the t” 
integral, we obtain 

x [%p* Up@> t )  U,(t> t )  -hpq Uq(4  t )  Uk(t> t)l. (5 .7 )  

This is the eddy-damped quasinormal Markovian (EDQNM) closure (cf. Rose & Sulem 
1978; Fournier & Frisch 1978). We have seen that it follows from the DI equations 
and the fluctuation-dissipation relation when Uk( t ,  t )  evolves sufficiently slowly. How 
slow is slow enough will become apparent in what follows. 

We note that if we take t 9 p-l, by which we mean that t is sufficiently large so 
that terms like exp [ - (pk +pp +pq)] t can be neglected relative to unity, then (5 .7 )  
can be written simply as 

( $ + 2 ( v k - ~ i ( i p k ) )  ) u , ( t , t )  = F ~ + A F ~ .  (5.8) 

This suggests that 2yk = 2(vk-Ci(ipk)) is the rate a t  which U , ( t , t )  approaches the 
stationary spectrum. 
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Let us now take this suggestion of the Markovian result seriously and determine 
under what circumstances it is consistent with the equations before the Markovian 
approximation is applied (i.e. (5 .3 ) ) .  Imagine a small perturbation U i  - U$t a t  a single 
wavenumber k to the energy spectrum at  time t = 0. Then the simple-decay result 
suggests 

Uk( t , t )  = U ~ t + ( f k - ~ J ~ t ) e x p ( - Z y k t )  

= Uit + suk(t). (5 .9)  

Substituting (5 .9)  into (5 .3)  yields 

where we have used the definition of UZt as given by the stationary energy equation 
(4 .21) .  If we assume that 2yk d ,uk+pp+pq for all k ,  p and q, thcn (5 .10)  for large 
t (i.e. t 9 p-l) gives the spectral relaxation rate as 

(5.11) 

If we assume that Y k  < pk, then (5.11) reduces to (5 .1)  as given by Lee (1974).  On 
the other hand, if we try to  impose yk = pk,  as Edwards' (1964) treatment suggests, 
then (5.1 1) gives 

(5.12) 

which is the Leslie (1973) (e = - 1 )  result and not the Edwards (1964) ( e  = + 1 )  result. 
Of course, there are sytems for which the relaxation rate of u k ( t ,  t )  is exactly twice 
the response rate. For example, this is the case for the linear example (3 .6 ) ,  and we 
note that Edwards' (1964) formalism is based on a direct analogy to  the linear system. 
However, (5.10) indicates that  we should not in general assume this to be the case 
for nonlinear dynamics (cf. Leith 1971). 

We can now say something about the validity of the Markovian approximation. 
If we use the DI energy equation (2 .9)  with the non-stationary fluctuation-dissipa- 
tion relation (3 .5)  and substitute in the renormalized propagator (4.12) and the ex- 
ponentially decaying energy spectrum (5 .9) ,  we obtain the Markovian closure 
equations (5 .7)  up to terms of order y / p .  By this we mean that if terms of the 
form 2yp/ (& + p p  +p,) are neglected relative to unity, then (5 .7)  results. This would 
indicate that if u k ( t ,  t )  approaches equilibrium exponentially with rate 2yk < pk, or 
slower than exponentially, then Markovian closure is a valid approximation to the 
DI energy equation. 

Finally, we turn to the question of defining the response rate ,uk for the non- 
stationary case. This can be done in a systematic way when the Markovian 
approximation is valid (cf. Carnevale & Martin 1982). In  that case, the response 
function Gk(t, t ' )  varies much more quickly in the difference variable 7 = t - t' than 
in the sum variable T = t(t + t ' ) .  It is then reasonable to write the response function 
in terms of these slow and fast variables as 

Gk(t, t ' )  Gk(7; T), 

and interpret it as the response of the system at time T i n  the evolution of the system. 
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We note that a a i a  +--, a t - %  2aT 
- - 

and we can rewrite the response equation entirely in terms of 7 and T. Then, if we 
Fourier-transform in the fast variable, we obtain 

(5.13) 

and Uk(T, T) is the energy spectrum a t  time T. Thus neglecting terms O(aU(T, T)/BT), 
or O ( y / p )  in our previous language, we can again define p based on the w-plane 
st'ructure of Gk(w; T ) ;  now, however, p is taken to have a slow variation in time T. 
Thus in the Markovian approximation we have 

(5.15) 

(5.16) 

(5.17) 

As we have discussed, pi  is an approximation to  the reciprocal of the integral over 
7 of Gk(7; T) a t  time T ,  pk is an approximation to  the shifted position of the linear 
pole a t  vk and should describe the large-7 behaviour ofGk(7; T), and 2yk is the spectral 
relaxation rate in the approach to  the stationary spectrum. 

It is interesting to compare these results with the theory of quasiparticles in 
quantum statistical field theory. The quasiparticle is a collective oscillation with 
frequency or energy wk and lifetime pk. It is usually assumed that wk + p k ,  and the 
lifetime p k  is given approximately by 

p k  = -ReZi(Wk). (5.18) 

The equation for the decay of the quasiparticle spectrum is written 

(5.19) 

which is the analogue of our energy equation (5.8) (cf. Kadanoff & Baym 1964). So 
no discrepancy appears since the decay rate is the same as the relaxation rate given 
by (5.19) (i.e. what we have called Yk).  This is actually illusory because ,uk has been 
neglected relative to wk in these equations. An analysis of the quasiparticle picture 
in which pk is assumed finite and retained generalizes (5.18) to  

p k  = - Re Z i ( W k  -i,uk), (5.20) 

a u k ( t , t )  = 2u 
k(  3 Re zk(wk) f 2cz(wk), 

at 

and the relaxation rate in (5.19) becomes 

Yk = -ReCi(wk+ipk), (5.21) 

in direct analogy to our analysis (cf. Fetter & Walecka 1971). I n  fact, by a 
straightforward generalization of Leslie's prescription, Carnevale & Martin (1982) 
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have shown that (5.20) and (5.21) hold for fluid problems in which the interaction 
between waves with frequency wk and turbulence is considered. That generalization 
also provides a prescription for frequency renormalization. 

6. Discussion 
We have presented an analysis of the three simplest viscosity-renormalization 

prescriptions which are based on a simple-pole approximation to the fluid response 
function in second-order closure. This analysis suggests that Edwards’ ( 1964) 
identification of the energy-spectrum relaxation rate with eddy viscosity is inconsistent 
with DI theory. Kraichnan’s ( 1964) prescription provides a self-consistent approxi- 
mation to the time integral of the response function. Leslie’s (1973) prescription gives 
an approximation to the position of the shifted viscous response pole in the 
complex-frequency plane. 

We have emphasized the merits of Leslie’s prescription. It is the analogue of 
quantum field theory renormalization and it is easily generalized to a multiple-pole 
representation of the response function. However, the possible vanishing of the 
denominator -pk -t-pp+,uq may cause difficulty in the implementation of Leslie’s 
prescription. Consider, for example, the case of periodic boundary conditions on a 
finite box, and a linear viscosity given by uk = vk2. The components of the 
wavevectors are integers, so solution by iteration will diverge if the initial approxi- 
mation is pk = uk. This difficulty can be avoided by adding a small constant term 
to the initial approximation.? If the wavevector sums are approximated as integrals, 
then we have found in some model studies that the singularity is integrable on first 
iteration. If, however, inertial-range forms for U, and pk are assumed, then the 
integral diverges. It is believed that this divergence, which also occurs in the 
Kraichnan and Edwards prescriptions, cannot be avoided within the strict confines 
of the Eulerian DI theory (cf. Leslie 1973). 

The analytic structure of the self-energy in a continuous-wavevector description 
is far more complicated than the meromorphic case treated here. In  a future paper 
we will say more on the possibilities in that situation. 
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Wright, Harvey Rose, Don DuBois, Cecil Leith and Uriel Frisch. Much of this work 
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Office of Naval Research (Contract no. N00014-79-C-0537). One of us (GFC) also 
wishes to  acknowledge the hospitality of the Observatoire de Nice (CNRS), the 
Istituto di Fisica (Universitb di Roma), and the Istituto die Fisica dell’atmosfera 
(CNR, Roma). 

Appendix 

(1973). First we define 
The detailed derivation of (3.4) contained here follows that given by Martin et al. 

u;( t ,  t’) = u,(t, t’) e(t-t’) .  (A 1)  

t Often in two-dimensional applications it is appropriate to include a Rayleigh friction in the 
linear viscosity (i.e. vk = uka+R, where R is independent of k). As long as Rlv is not an integer, 
the first iteration is well defined. 
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From (2.4) we obtain 
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a a 
- Q ( t , t ‘ )  = U,( t , t ‘ )6( t - t t ’ )+O(t - t ’ ) -  U,(t,t’) at at 

= U,(t,t’)6(t-t’)-B(t-t’) u,  U,(t,t’) 

This is then rewritten as (A 2) 

(:+ u,) G(t, t ‘ )  dt”ZT,(t, t ” )  Ui( t” ,  t ’ )  

= Uk(t,  t ’ ) a ( t - t ’ ) + O ( t - t ‘ )  dt”[Zz(t, t”)“(t‘,t”)+F,(t,t‘’) G k ( t ’ ,  t ” ) ]  

roo roo 

Now note that the integral 
r m  

J t o  dt”F,(t, t ” )  &(t” ,  t ’ )  

vanishes if t’ > t since the integrand then vanishes identically. Hence this integral 
can be rewritten as 

r m  rm 
Q t - t ’ )  J dt”ZT,(t, t ” )  Ui(t”,t’) = e(t-t ’)  J dt”ZT,(t,t”) Uk(t”, t’), 

tll t’ 

where the last line follows from the definition of Q,(t, t ’ ) .  We can thus combine the 
two integrals on the last line of (A 3) to obtain 

where we have used the retarded time dependence of G, to define the upper limit on 
the last two integrals. The integro-differential operator acting on the left-hand side 
of ( A 4 )  is exactly the same as in (2.5) and defines the inverse response function 
G,l(t, t’). That is, (2.5) can be written as 

where 

Thus, multiplying (A 4) by G, and integrating, we obtain 

Uk(t, t’) O ( t - t ’ )  = Gk(t, t ’ )  Uk(t’, t’) 

+ jtr dt” ftr dt”’G,(t, t ” )  O ( t ” - t ’ )  [Zgt”, t’”) U,(t’”, t ’ )  

+Z’,((t”, t”’) Gk(t’, t”’)+F,(t”, t’”) Gk(tr, t ‘ ” ) ] .  (A 6) 
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This relationship simplifies in the case of white-noise forcing, for in that case the 
integral involving Fk vanishes identically due to the retarded time structure of 
Gk(t,  t ‘ ) .  Thus for white-noise forcing we have 

where we have made explicit the limits on the integrals. (3.4) 
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